Statistical mechanics of two-dimensional shuffled foams: geometry-topology correlation in small or large disorder limits.

نویسندگان

  • Marc Durand
  • Andrew M Kraynik
  • Frank van Swol
  • Jos Käfer
  • Catherine Quilliet
  • Simon Cox
  • Shirin Ataei Talebi
  • François Graner
چکیده

Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010)] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011)]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Statistical Mechanics of Two-dimensional Foams

The methods of statistical mechanics are applied to two-dimensional foams under macroscopic agitation. A new variable the total cell curvature is introduced, which plays the role of energy in conventional statistical thermodynamics. The probability distribution of the number of sides for a cell of given area is derived. This expression allows to correlate the distribution of sides (“topological...

متن کامل

Long-range geometrical correlations in two-dimensional foams

The statistical properties of two-dimensional, space-filling random cellular structures (foams, or their dual, random triangulations) in statistical equilibrium are obtained by maximum entropy inference and topological simulations. We show by maximum entropy inference that for a broad class of foams (shell-structured, including three-sided cell inclusions), all two-cell topological correlators ...

متن کامل

Cyclic deformation of bidisperse two-dimensional foams

In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image ana...

متن کامل

Hysteresis and avalanches in two-dimensional foam rheology simulations.

Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a driven large-Q Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At small strain amplitudes, bubbles deform and recover their shapes elastically, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 6  شماره 

صفحات  -

تاریخ انتشار 2014